676 {EEE TRANSACTIONS ON SIGNAL PROCESSING. VO

L. 40. NO. 3. MARCH 1992
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Comments on “‘Fourier Analysis and Signal
Processing by Use of the Mobius
Inversion Formula”’

V. K. Ananthashayana

Abstract—A new method of Fourier analysis based on the number-
theoretic Mébius inversion formula was recently developed by I. S.
Reed et al. This correspondence suggests a few corrections needed in
its proof of theorems and equations.

In the above paper,' on page 460, for the proof of Theorem 5,
case I1, the initial subcase b should read subcase a with the follow-
ing modifications:

Subcase a: m is an even integer, i.e., m = 2q, where g € 1, so
thatn = 2°(2(2¢) + ).

On page 461, below (22), “'n =1, 2, -+ -, 10" should read “‘n
=1,2, - ,5.” In the last paragraph of page 461, “4 (n/m) in
(20)’’ should read ‘4 (m/n) in (22).”

The Fig. 3 caption should be ‘‘the magnitude | H(nfy)| for =5
< n < 5 of function H(nfy)"’ with the plot | H(nfy)| versus n in-
stead of H(nfy) versus n.

_On page 462 under case I while computing b,, S$(2, 1/8) =
[A(1/8) + A(3/8)1/2 should read 52, 1/8) = [A(1/8) +
AG5/®)1/2.

The proof of Theorem 6 on page 469 after interchanging inte-

gration and summation should read

N T
Fiy* G = 2 g™ (l S eI F(y) du>
n=—-N T Jo

instead of

N T
F)* G = 2 &7 <l g o2 F(u) du>.
n=-N T 0
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Minimum-Variance Deconvolution and Maximum-
Likelihood Deconvolution for Nonwhite Bernoulli-
Gaussian Processes with a Joseph Spectrum

Chong-Yung Chi

Abstract—Todoeschuck and Jensen recently reported that the reflec-
tivity sequences, denoted k), calculated from some sonic logs are not
white and have a power spectral density approximately proportional
to frequency, called a Joseph spectrum. In this correspondence, we
show how to compute the minimum-variance estimate fjiyy (k) and max-
imum-likelihood estimate fiyy (k) for a n(k) modeled as a nonwhite Ber-
noulli-Gaussian (B-G) process with a Joseph spectrum. We also pre-
sent the corresponding fiiv(k) and firs (k) for a statistically equivalent
white B-G process p*(k) which mimics n(k). Through some simula-
tions, we conclude that sy = fmy(k) and fin) = pa (k) for a
white B-G process p(k) and that jjiy(k) and jixe (k) are acceptable for
the estimation of p(k) when p(k) is nonwhite with a Joseph spectrum.

[. INTRODUCTION

The estimation of the desired signal p(k) from noisy measure-
ments z(k), k = 1,2, -~ -, N, where

k) = k) * vik) + n(k) M

where v (k) is the impulse response of a linear time-invariant sys-
tem and n(k) is the measurement noise, is a deconvolution problem.
This problem can be found in areas such as seismic deconvolution,
biomedical ultrasonic imaging, and channel equalization (com-
munications). Conventionally, the whiteness assumption about (k)
is used in seismic deconvolution, such as predictive deconvolution
21, 131, minimum-variance deconvolution (MVD) [4], [5], and
maximum-likelihood deconvolution (MLD) 6}, [71.

Although the conventional whiteness assumption about u(k) is
used in seismic deconvolution, perhaps it is valid that pu(k)’s are
white for some geologies but not for all geologies. Todoeschuck
and Jensen [1] recently reported that the reflectivity sequences cal-
culated from some sonic logs are not white and have a power spec-
tral density approximately proportional to frequency, called a Jo-
seph spectrum. The associated normalized autocorrelation c(k) of
p(k) defined as

Elut)pi + K]

k) = ————— 2
€O =T e @
is negligible for |k| = 2, except c(1) = ¢(—1) = —0.405. We

wonder whether or not the existing MVD and MLD algorithms,
which are based on the whiteness assumption about u(k), are still
applicable for estimating this nonwhite u(k) because this nonwhite
model is valid for some geologies according to [1]. This motivated
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a study of the performance of both the well-known MVD and MLD
algorithms for this nonwhite p(k).

Kormylo and Mendel [6], [7] developed MLD by modeling u(k)
as a white Bernoulli-Gaussian (B-G) [6], [7] process, denoted £(k).
This process has been popularly used in modeling a reflection se-
quence in seismic deconvolution and biomedical ultrasonic imag-
ing. A white B-G process is defined as

§k) = r(k) - q(k) 3

where r(k) is a white Gaussian random process with zero mean and
variance C and g(k) is an independent Bernoulli process for which

P,Iq(k)] = NP1 — N~ @

where g(k) can take only a binary value one or zeroand 0 < \ <
1 is the probability for g(k) equal to 1. Notice that £(k) is a zero-
mean white process whose variance is ué(k) = A C when g(k) is not
known and ag(k) = Cq(k) (time-varying variance) when g(k) is
known.

In this correspondence, we assume that n(k) is white Gaussian
with variance R and that the parameters C, A\, R, and the wavelet
v(k) are given a priori. We show how to obtain the minimum-
variance estimate jyy(k) and the maximum-likelihood estimate
fim(k) for a nonwhite B-G u(k) with a Joseph spectrum, denoted
amv(k) and g (k), respectively. Next, we form a statistically
equivalent white B-G process p*(k) to mimic u(k). We obtain the
resulting estimates of u*(k), denoted fiv(k) and iy (k). Through
some simulations, we compare jiyy(k) with fifiy(k) and fiy (k) with
pmL(k), respectively. We can then infer whether or not both
fav(k) and fify (k) are acceptable for the estimation of p(k).

In Section II, we briefly review the MVD and MLD for a white
B-G process. We then present a nonwhite B-G model for u(k) with
a Joseph spectrum in Section III. In Section IV, we show how to
obtain iy (k), fimi(k), fimv(k), and fify (k) using the existing algo-
rithms. We then show some simulation results in Section V. Fi-
nally, we summarize our conclusions.

II. MVD AND MLD FOR A WHITE B-G PROCESS

In this section, we briefly review MVD and MLD for a white
B-G p(k) = £(k) defined as (3), respectively. We now turn to MVD.

A. MVD

It is well known that the linear minimum-variance estimate,
fiyy, of p is given by

fvy = E[pal {E[z2']} "'z ®)

where p = (p(1), p(2), -+, wN)) and z = ((1), z(2), * - -,
z(N))'. u(k) is thought of as a zero-mean white random process
with variance o2(k) = AC in the derivation of fiyyy. Therefore,
fimy is a function of NC, R(k) = R (the variance of n(k)), wavelet
v(k), and measurement z(k). Instead of directly computing fiyy
using (5), Mendel [4], [5] developed a computationally efficient
MVD filter. The estimate fiyy(k) is computed via a Kalman filter
type optimal smoother associated with a standard state-variable
model as follows:

x(k) = dx(k — 1) + yuck) 6)
k) = h'x(k) + n(k) @)

where @ is an m X m matrix, y and h are m X | vectors, and m is
the system order. Of course, there are many (@, y, h)’s which gen-
erate the same output z(k) (e.g., [7], [8]). Note that (k) = h’®*y

for k = 0. We remark that the MVD filter is applicable for either
time-varying or nonstationary systems or both.

B. MLD

Kormylo and Mendel [6] and Mendel [7] developed a maximum-
likelihood deconvolution (MLD) algorithm which includes the de-
tection of g(k) and estimation of r(k) instead of directly estimating
u(k) as in MVD. The maximum-likelihood estimate, §y,, of ¢ =
(g(1), g(2), - - -, g(N))' is the one that maximizes the likelihood
function

S{qlz} = p(z, 9). ®)

After the detection of g(k) is completed, the maximum-likelihood
estimate Py, of r = (r(1), r(2), - - -, r(N))' is then computed.
Py is the one that maximizes the likelihood function

§'{riz} = p(z. rig). ®
Since z and r are jointly Gaussian when q is given

P = Fuv = Elrel{E[z2']} " 'z. (10)

Therefore, Ay, can also be obtained using Mendel’s MVD filter
with ai(k) = Cgp (k) (time-varying variance). Finally, the maxi-
mum-likelihood estimate of u(k) is given by

n

Chi et al. [9] further developed a computationally fast MLD al-
gorithm which is practical and has been successfully used to pro-
cess real seismic data. Let us emphasize that the detection of g(k)
and estimation of r(k) in these MLD algorithms require the stan-
dard state-variable model (6) and (7). How the MVD and MLD
algorithms provide the estimates of u(k) is omitted here. The reader
can refer to [4], [5] for the former and [6], (7], [9] for the latter.

AmLk) = Py (k) - Guitk).

III. BERNOULLI-GAUSSIAN PROCESS WITH A JOSEPH SPECTRUM

Let u(k) be a nonwhite B-G process with a Joseph spectrum. We
prefer to use u(k) for the signal to be estimated without confusion,
although it denotes a different random process from that used in
Section II.

As described in Section I, for a u(k) with a Joseph spectrum, its
normalized autocorrelation function c(k) is negligible for |k| = 2.
We, therefore, assume that

ck) =1+ adk—1)+adk+1) (12)

where 8(k) is the discrete delta function (6(k) = 1, for k = 0 and
8(k) = 0 for k # 0). We model pu(k) such that its normalized au-
tocorrelation function is given by (12) as follows:

wk) = £k + pklk — 1)

where £(k) is a white B-G process defined as (3). It can easily be
shown that p(k) has a normalized autocorrelation function given by
(12) and

(13)

I
- . 14
o I+ 7 (14)

Note that u(k) = £(k) when p = 0 and that p can easily be obtained
by solving (14) when « is given. Next, we discuss how we estimate

u(k).

IV. ESTIMATION OF A B-G PROCESS WITH A JOSEPH SPECTRUM

From (13) one can see that the minimum-variance estimate
fmv(k) and the maximum-likelihood estimate iy (k) can be ob-
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tained, respectively, as follows:

iny®) = By + pbuvk — 1) (15)
and
i (0 = Bt + pEwk — D). (16)
From (1) and (13) we see that
2k = £k * {1, p} * v (k) + n(k). an

Because £(k) is a white B-G process, the existing MVD and MLD
algorithms described in Section Il are applicable for estimating &(k)
if we can convert (17) into a standard state-variable form, as in (6)
and (7). Thus, what we need to do for computing both éMv(k) and
gu(k) is to form a standard state-variable model with £(k) being
the input.

Let

x, (k) = &(k). (18)

Substituting (13) and (18) into (6) and (7) provides the following
augmented state-variable equations:

[0 22 e o
xo] Loy @llxk-1D Y © o

x(k)
k) = [0 h'] + n(k) (20)
x (k)

and

which is exactly a standard state-variable model required by the
MVD and MLD algorithms described in Section II. After we obtain
Evv(k) and Ean(b), fimv(k) and fmy (k) can be obtained using (15)
and (16), respectively.

We now derive a statistically equivalent white B-G process, de-
noted, p*(k) by letting Pr [p*(k) # 0] = Pr [u(k) # 0] and
E[(p*k))] = E[#*(0)]. Let

wrk) = r¥k) - g*®). @1

Then, the parameter A*, the probability of g*(k) = 1, is determined
by

N = Prg*(k) = 1] = Pr[p*(k) # O] = Pr[uk) # 0]
=Pr[¢k) # Oor &k — 1) # 0]
=Prigk) # 0orgk — 1) 0] =1 — (1 = N =27 (22)

for a small \. Because C = E[£(k)]/\, the amplitude variance,
C*, of r*(k) is determined by

_ Elw*®)) _ El k) _ 1+ o c
A* ¥ 2 )

Cc* 23)
We can then compute fiyy(k) and fixyL(k) with the statistical param-
eters \* and C* using the algorithms described in Section II. No-
tice that when p = 0, (22) and (23) are not applicable, and
vk = finv(®) and i (k) = B (k) since p*(k) = p(k) = £(k).
Next, we show some simulation results for Ayv(k), a6,
fmv(k), and fi (K).

V. SIMULATION RESULTS

In this section, we present some simulation results using syn-
thetic data. The noise-free data were generated by first convolving
{1, p} with a Bernoulli-Gaussian sequence §(k) with parameters A
= 0.07 and C = 0.0225 to form the nonwhite u(k), and then con-
volving u(k) with a selected wavelet v (k). We then added pseudo-
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Fig. 1. Wavelet v (k).
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Fig. 2. Synthetic noisy data with SNR = 10.

Gaussian random noises to the noise-free data to form the synthetic
noisy data. We then computed Euv(k), as well as firyy(k) using Men-
del’s MVD filter and £y (k) as well as pn(k) using the Kormylo
and Mendel’s MLD algorithm. Finally, we obtained fpv(k) and
fim (k) using (15) and (16), respectively.

The selected wavelet v (k), which was taken from [7], is shown
in Fig. 1. The selected parameter a (see (12)) was equal to —0.405
as reported in [1]. The parameter p was then equal to —0.51 (see
(14)). The synthetic noisy data is shown in Fig. 2 with signal-to-
noise ratio (SNR) equal to 10. The estimates fmv(k) and fiy (k) are
shown in Figs. 3(a) and (b}, respectively. The estimates finpy(k) and
p (k) are shown in Figs. 4(a) and (b), respectively. In these fig-
ures, *’s denote true spikes and bars denote estimated spikes.

Comparing Fig. 3(a) with Fig. 4(a), one can see that the results
shown in Fig. 3(a) are only slightly better than those shown in Fig.
4(a). Comparing Fig. 3(b) with Fig. 4(b), again, one can se¢ that
the results shown in Fig. 3(b) are only slightly better than those
shown in Fig. 4(b). From these simulation results, we infer that
the performances of the MVD filter and the MLD algorithm for the
presented statistically equivalent white B-G process are very close
to those of the corresponding optimal estimates. In other words,
dv(k) and fify (k) are acceptable for the estimation of u(k) when
p(k) is nonwhite with a Joseph spectrum.

VI. CONCLUSIONS

In seismic deconvolution, the reflection sequence p(k) is con-
ventionally assumed to be white. A white B-G model for a reflec-
tivity sequence may be valid for some geologies, and, a nonwhite
B-G model with a Joseph spectrum may be valid for other geolo-
gies.

In this correspondence, we have shown how to obtain both the
minimum-variance and maximum-likelihood estimates for a non-
white B-G process u(k) with a Joseph spectrum. This nonwhite p(k)
is viewed as a colored noise generated as the output of a (2-point
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Fig. 3. (a) Minimum-variance estimate fiyy(k) and (b) maximum-likeli-
hood estimate fiyy (k). *’s denote true spikes and bars denote estimates.
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Fig. 4. (a) Minimum-variance estimate fiv(k) and (b) maximum-likeli-
hood estimate jixy (k). *'s denote true spikes and bars denote estimates.

FIR) coloring filter that is excited by white (B-G) noise £(k). Thus,
the results presented in this correspondence are a special case of
this more general concept. We also have presented the correspond-
ing estimates associated with a statistically equivalent white B-G
process u*(k) which mimics p(k). The simulation results showed

VOL. 40. NO. 3. MARCH 1992 679

that the estimates, fyv(k) and figy (k), of p*(k) are very close to the
optimal estimates jyy(k) and fy (k), of u(k), respectively. We,
therefore, conclude that fifiy(k) = fimv(k) and fy (k) = Ay (k) for
a white B-G p(k) and that fif;y(k) and 2y (k) are acceptable for the
estimation of u(k) when u(k) is nonwhite with a Joseph spectrum.
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Engle-

On the Quality of Recursively Identified FIR Models

Svante Gunnarsson

Abstract—In this corresp e we consider recursive identification
of time-varying systems having finite impulse response, focusing on the
tradeoff between tracking capability and disturbance rejection. Ap-
proximate, but simple and explicit, frequency domain expressions for
the model quality are derived for three different identification algo-
rithms. The results, derived under the assumptions of slow adaptation,
slow system variation, and high model order, are extensions of the re-
sults presented in [1] to the case where the system output is affected by
correlated disturbances.

I. PROBLEM DESCRIPTION

A fundamental problem in recursive identification of signals and
systems having time varying properties is the tradeoff between
tracking ability and disturbance rejection. This problem has been
discussed by several authors, and surveys are given in, for exam-
ple, [2] and [3]. We shall in this correspondence consider the prob-
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